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Nanoscale Wave Patterns in Reactive Adsorbates with
Attractive Lateral Interactions
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A model of a hypothetical surface chemical reaction with lateral interactions
between adsorbed particles is investigated. It shows stationary, standing, and
traveling nanoscale structures which result from the competition between reac-
tions, diffusion, and the phase transition caused by attractive lateral interac-
tions. Internal fluctuations destroy the coherence of traveling structures and lead
to a complex dynamics of interacting traveling wave fragments in this system.

KEY WORDS: Nonequilibrium pattern formation; nonequilibrium fluctua-
tions; heterogeneous catalysis.

1. INTRODUCTION

A characteristic property of spatially extended systems far from thermal
equilibrium is that, besides stationary structures which can also be found
in equilibrium systems, they may show oscillations, turbulence and various
wave patterns.(1) In many situations, including surface chemical reactions, (2)

such time-dependent steady patterns arise from the interplay of non-
equilibrium reactions and the diffusion of reactants.(3) In this case, the
characteristic length scale of appearing patterns is limited by the diffusion
length of reacting particles, i.e., by the distance a molecule would pass until
it undergoes a reactive collision. In typical heterogeneous catalytic reac-
tions, such as the CO-oxidation on platinum single crystal surfaces, (4) the
diffusion length of mobile adsorbed reactants lies in the micrometer range.

Recent observations with a fast scanning tunneling microscope however
have shown various spatiotemporal patterns on nanoscales, well below the
diffusion length.(5) The mechanism of those structures involves attractive
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potential interactions between adsorbed molecules, which provide the cohe-
sion necessary to localize patterns on scales shorter than the diffusion
length. If such interacting adsorbates are subject to nonequilibrium reac-
tions, they can be regarded as an example of reactive soft matter.(6) To
describe emerging patterns in such systems a continuum model is desirable
which remains valid even for strong attractive lateral interactions and takes
fluctuations explicitely into account because their characteristic scales are
expected to be small. In a previous publication, (7) we have derived from the
underlying microscopic master equation a nonlocal mesoscopic kinetic
equation for reactive adsorbates which meets these requirements.

This approach has been used to investigate the formation of stationary
microstructures of different morphologies in a single reactive adsorbate with
attractive lateral interactions.(8) In a more recent publication, (9) a model
for two different species has been presented, which shows the formation of
traveling nanoscale structures. Similar propagating patterns have been
observed experimentally in other systems that can be regarded as reactive
soft matter, such as a metastable NaNO3 layer formed in the reaction of
single-crystal NaCl(100) with dry HNO3 that was exposed to water(10) or
thin Langmuir�Blodgett films under the influence of light-induced trans�cis
isomerizations.(11) Moreover, similar traveling structures can be expected in
polymer systems subject to light-induced reactions, where so far only sta-
tionary microstructures have been predicted theoretically(12) and observed
experimentally.(13)

The aim of this paper is to present new results of our investigations of
the previously proposed model.(9) In Section 2 the model is discussed. In
Section 3 a linear stability analysis for uniform stationary states is performed.
Results of numerical simulations are presented in Section 4. Finally, an
outline of the derivation of the model is given in the Appendix.

2. THE MODEL

We consider a model system with two adsorbed species (U and V )
that participate in a nonequilibrium annihilation reaction U+V � 0. We
assume that particles U are strongly attracting each other and, in absence
of the other species V, this adsorbate would undergo a first-order phase
transition. The particles of the second species V are attracted to particles
U but do not interact between themselves. The particles V are strongly
chemisorbed in comparison to the species U which is highly mobile and
can desorb, in contrast to the species V. Moreover, the particles U and V
occupy different sets of adsorption sites. Assuming linear transition rates,
the following mesoscopic evolution equations for the fluctuating coverages
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u and v can be derived through coarse graining of the microscopic master
equation:

�u
�t

=ku
ad pu(1&u)&ku

des(W ) u&kr uv+D {2u

+{ _ D
kBT

u(1&u) {W(r)&+!u(r, t)

(1)
�v
�t

=kv
ad pv(1&v)&kruv+!v(r, t)

Here ku
ad and kv

ad are the sticking coefficients of the species U and V, pu and
pv are their constant partial pressures in the gas phase, kr is the reaction
rate constant, D is the diffusion constant of the mobile species U, and T is
the temperature. The desorption rate coefficient ku

des(W ) for the particles of
type U depends on the local potential W(r) as ku

des(W )=ku
des exp[W(r)�kBT ].

This potential acting on adsorbed particles U results from attractive pair-
wise interactions with surrounding molecules of the species U and V and
is given by

W(r)=&| wuu(r&r$) u(r$) dr$&| wuv(r&r$) v(r$) dr$ (2)

For simplicity we assume that both binary interactions have a Gaussian
profile with the same radius r0 , though their strengths are different. The
interactions are therefore described by functions

wuu(r)=
w0

uu

?r2
0

exp \&
r2

r2
0+ , wvv(r)=

w0
vv

?r2
0

exp \&
r2

r2
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Note that, besides the diffusion term, the evolution equation for the mobile
species U also contains a term describing drift of this adsorbed species in
the gradient of the local potential. The local reaction rate constant kr is not
affected by energetic interactions because the considered reaction system is
far from equilibrium. The adsorbates are placed on top of a crystal sub-
strate that can take away any excessive energy. Furthermore, the reactants
U and V are supplied and the reaction product, bearing off the energy, is
continuously pumped away from the gas phase.

The random terms !u(r, t) and !v(r, t) in the mesoscopic equations (1)
take into account internal fluctuations of adsorption, desorption, reaction
and diffusion processes:
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Their presence reflects the fact that the actual microscopic dynamics of
the system is discrete and stochastic, and it is only approximately described
using continuous coverage variables. They are internal in the sense that
they are neither caused by variations of the system parameters nor by
external random forces. Retaining such internal noises allows incorporation
of microscopic fluctuations into the macroscopic description for continuous
coverages. Hence, Eq. (1) can loosely be viewed as a Langevin equation
describing the ``Brownian motion'' of the macroscopic coverage under the
influence of microscopic stochastic interactions. The internal noises given
by Eq. (4) involve the additional parameter Z which is absent in the
macroscopic limit. It specifies the lattice density, i.e., the number of lattice
sites per unit surface area of the metal substrate. Note that all terms in
Eq. (4) are proportional to the atomic lattice length l0=1�- Z. The ran-
dom forces f, fad , fdes , gad , and qreact represent independent white noises of
unit intensity. The reaction-related noises in the equations for the coverages
u and v are identical because each annihilation event simultaneously
changes the numbers of particles of both species.

In the Appendix we set up the microscopic master equation and show
how the mesoscopic evolution equation can be derived from it by the
application of a coarse graining procedure, where the system is divided into
a set of boxes with characteristic size lB . Complete diffusional mixing is
assumed inside each box and hence, a master equation for the ensemble of
boxes is obtained. The latter can be approximated by a multivariate
Fokker�Planck equation if a single box contains a large number of adsorp-
tion sites, i.e., if the condition Zl2

B>>1 is satisfied. A functional Fokker�
Planck equation equivalent to the continuous description Eq. (1) is
applicable only for length scales much larger than lB . Because the smallest
characteristic length of the considered problem is given by the interaction
radius r0 , the mesoscopic description is applicable only if the condition
r0>>l0 is satisfied. Note, that a similar nonlocal equation without fluctuat-
ing and kinetic terms has been independently constructed for binary alloys
in the limit of long-range interactions.(14)

To simplify the following analysis of the model, the dimensionless param-
eters :=ku

ad pu�ku
des , }=kr�ku

ad pu , ;=kv
ad pv �kr , ==w0

uu�kBT, =$=w0
uv�kBT
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and \0=r0 �Lr are conveniently introduced, where Lr=(D�kr)
1�2 corre-

sponds to the reactive diffusion length of particles U.

3. BIFURCATION ANALYSIS

We first neglect fluctuations and consider the deterministic limit of
equations (1). The stationary uniform states of the system u=u0 and v=v0

are obtained as solutions of the equation

1&u&:&1u exp[&=u&=$v(u)]&}uv(u)=0 (5)

where v(u)#;�(;+u) and v0=v(u0). This equation can have either a
single or three different solutions. In the latter case, a dense and a dilute
uniform phase coexist.

The stability of the uniform stationary states can be tested by adding
small plane wave perturbations. Introducing dimensionless time {=ku

ad pu t
and dimensionless coordinate !=x�Lad , where the characteristic length is
Lad=(D�ku

ad pu)1�2, we substitute u=u0+$u exp(#k{+ik!) and v=v0+
$v exp(#k{+ik!) into Eqs. (1) and, after linearization, arrive at the eigen-
value problem

ku
ad pu(J(k)&#k E) \$u

$v+=0 (6)

that determines the dimensionless linear growth rates #k as a function of
the dimensionless wavenumber k. The elements of the dimensionless 2_2
linearization matrix J(k) are given by

J11(k)=&1+:&1 exp(&=u0&=$v0)[=u0 exp(&1
4r2

0k2)&1]&}v0

&k2+=u0(1&u0) k2 exp(&1
4r2

0 k2)

J12(k)=&}u0+:&1=$u0 exp(&=u0&=$v0) exp(&1
4r2

0 k2)
(7)

+=$u0(1&u0) k2 exp(&1
4 r2

0k2)

J21(k)=&}v0

J22(k)=&}(;+u0)

The eigenvalues #\
k obtained from Eq. (6) can be either both real or both

complex. The uniform stationary state becomes unstable with respect to
spatially periodic perturbations with a dimensionless wavenumber kc when
the conditions Re(#+

k )=0 and d Re(#+
k )�dk2=0 are satisfied at k=kc ,

where #+
k corresponds to the growth rate with the larger real part.
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If #k is complex at the instability point, this is a Hopf bifurcation with
broken translational symmetry (we call it the wave bifurcation).(9) Because
we have Re(#+

k )=tr[J(k)]�2, the conditions for such a bifurcation are

tr[J(k)]=0,
d tr[J(k)]

dk2 =0 (8)

They yield the following expression for the dimensionless wave number kw

of the first unstable mode:

k2
w=&

1
u0

&}(;+u0)+
}
2 \

v0

1&u0

+;+u0+
_\1+�1+

16(1&u0)
\2

0[;+v0+(1&;) u0&u2
0]+ (9)

In the limit r0 � 0 and for fixed ;, } and =, the homogeneous stationary
state can either be stable for all values of : or it can become unstable with
respect to spatially periodic perturbations for :=:&

c and it can either
remain unstable for all :>:&

c or become stable again at :=:+
c . In

this limit, the homogeneous steady state coverage u0 equals uD=(1\
- 1&4�=)�2 at the respective boundaries of the unstable region. Expanding
kw from Eq. (9) for \0=r0�Lr<<1 we obtain for the wavelength of the first
unstable mode in nonrescaled units the following expression to the lowest
order in \0

*w=(2?2)1�2 _ ;
(1&uD)(;+uD)

+;+uD &
&1�4

- r0 Lr (10)

Because *wt- r0 Lr , in this limit the critical wavelength *w would
generally lie between the radius r0 of the lateral interactions and the
characteristic diffusion length of the reaction Lr . This corresponds to the
submicrometer range for typical surface chemical reactions.

If the interaction radius r0 is large enough and the characteristic
intensity =$ of the cross-species interactions is sufficiently small, the growth
rate #+

k becomes real at the instability point. This case corresponds to a
Turing-like bifurcation leading to the formation of stationary microstruc-
tures with some dimensionless wavenumber kt .

(8) Then we have Re(#+
k )=

#+
k and

2#+
k =tr[J(k)]+[(tr[J(k)])2&4 det[J(k)]]1�2 (11)
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so that this dimensionless wavenumber is given by

k2
t =&

1
u0

&
}
;

u0v2
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&
u0v2

0

; +
_\1+�1+

16(1&u0)
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0[v0&(1&u0) u0v2
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Note that in the limit ; � �, =$ � 0 this expression reduces to the one
previously obtained in ref. 8 for a system with a single reactive species. For
small interaction radius r0 , the wavelength of the first Turing-unstable
mode is approximately

*t=21�2? _ ;
(1&uD)(;+uD)

&
;uD

(;+uD)2&
&1�4

- r0Lr (13)

It should be noted that even in the special codimension-2 situation, when
the wave bifurcation and the Turing-like bifurcation take place simultaneously,
the characteristic wavenumbers kt and kw of the respective first unstable
modes are different.

Figure 1 displays instability boundaries in the parameter plane (:, =)
for several different values of the interaction radius r0 at a fixed intensity
=$ of interaction between the two species. If the interaction radius is suf-
ficiently small, the boundary of the unstable region always corresponds to
a wave bifurcation. As r0 is increased, this boundary moves upwards. We
show in Fig. 1 the boundaries of wave bifurcations for (D�ku

des)
&1�2 r0=0,

0.02, 0.1 and 0.5. Moreover, the boundary of the Turing-like instability at
(D�ku

des)
&1�2 r0=0.5 is also shown here. The uniform stationary state is

linearly unstable with respect to nonuniform spatial perturbations in the
regions above the respective lines. Note that at sufficiently high : the
Turing-like instability precedes the wave bifurcation.

To illustrate the transition from the wave bifurcation to the Turing-
like instability, Fig. 2 additionally displays instability boundaries in the
parameter plane (:, =$) for (D�ku

des)
&1�2 r0=0.025. The solid lines indicate

the wave bifurcation, while the dashed lines correspond to the Turing-like
instability. The unstable region is located in the middle, between the left
and the right lines. The inset (a) shows the dispersion relation for the
codimension-2 situation where the uniform phase simultaneously under-
goes a wave bifurcation and a Turing-like instability. In the inset (b) the
uniform stationary state is unstable only with respect to a band of station-
ary modes and the formation of stationary microstructures can be expected.
On the other hand, in the inset (c) it is unstable only with respect to a
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File: 822J 702608 . By:XX . Date:25:10:00 . Time:00:15 LOP8M. V8.B. Page 01:01
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Fig. 1. Bifurcation diagrams for the uniform stationary state in the parameter plane (:, =)
for ;==$=3, }=1 and different values of the interaction radius r0 . The wave bifurcation
boundary is marked by the solid line in the limit r0 � 0, and by the long-dashed, the dot-
dashed, and the dotted lines for r0=0.02(D�ku

des)
1�2, r0=0.1(D�ku

des)
1�2, and r0=0.5(D�ku

des)
1�2,

respectively. The dashed line corresponds to the Turing-like bifurcation for r0=0.5(D�ku
des)

1�2.

band of oscillatory modes and hence non-stationary waves will be formed.
In the inset (d) the uniform stationary state is unstable with respect to both
stationary and oscillatory modes. In this case the choice of the initial
conditions determines whether stationary or non-stationary patterns are
formed. Note that the characteristic wave number for the wave bifurcation
is always larger than that for the Turing-like bifurcation, as directly follows
from Eqs. (9) and (12).

The critical values of the dimensionless cross-species interaction inten-
sity =$, where different bifurcations end and where they intersect, can be
analytically calculated in the limit \0 � 0. The end points =$crit, w of the wave
bifurcations are determined by the conditions tr[J(kw)]=O(\0) and
det[J(kw)]=O(\0) and are approximately given by

=$crit, w=
=}

;k2
w

[(;+uD)3+;uD] (14)
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Fig. 2. Bifurcation diagram in the parameter plane (:, =$) for ;=3, }=1, ==4.2, and
r0=0.025(D�ku

des)
1�2. The dashed and solid lines correspond to Turing-like and wave bifurca-

tions of the uniform stationary state respectively. The uniform phase is unstable in the
parameter region bounded by the left-most and the right-most of these lines. The black dots
mark the end points of the instabilities. The insets display the dispersion relations at the
points marked by the arrows; (a)�(d) correspond to :=0.73 and =$=0.368, :=0.78 and
=$=0.315, :=0.667 and =$=0.415, and :=0.679 and =$=0.346, respectively. The bold solid
lines in the insets correspond to the real part of the eigenvalues #+

k , the dashed lines to their
imaginary parts in dependence of the dimensionless wave number k.

The end point =$crit, t of the Turing-like bifurcation is determined by
tr[J(kt)]=O(\0) and det[J(kt)]=O(\0), and is approximately

=$crit, t=
=}

;k2
t

[(;+uD)3+;uD] (15)

The critical value =$tw corresponding to the codimension-2 situation,
where the wave and the Turing-like bifurcations cross (i.e., the solid and
the dashed lines in Fig. 2 intersect), is determined by simultaneously requir-
ing that tr[J(kw)]=O(\0), and d tr[J(kw)]�dk2=O(\2

0), and that
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det[J(kt)]=O(\0), and d det[J(kt)]�dk2=O(\2
0). It is approximately

given by

=$tw=
2=}

;(k2
t +k2

w)
[(;+uD)3+;uD] (16)

Note that we always have =$crit, w<=$tw<=$crit, t in the limit \0<<1.
The selection and stability of patterns in the vicinity of the wave bifurca-

tion can be determined by calculating the coefficients of universal coupled
dynamical equations for the amplitudes of unstable modes representing
left- and right-propagating waves, which are nonlocal if the group velocity
is finite.(15) Such a weakly nonlinear analysis has been performed for the
one-dimensional system in the absence of thermal desorption of the species
U.(16) We find that for very small interaction radii the wave bifurcation is
always subcritical, while for larger values of r0 it is supercritical. In the
latter case traveling wave trains are selected which are stable with respect
to spatial modulations of their amplitudes. The respective weakly nonlinear
analysis for the Turing-like bifurcation in the considered system has not yet
been performed.

4. NUMERICAL SIMULATIONS

The system of Eqs. (1) has been numerically integrated in one and two
dimensions starting with small random perturbations added to the unstable
uniform state. Figure 3 displays typical results of one-dimensional simula-
tions of the deterministic model with periodic boundary conditions. The
coverage u is shown in gray scale, with darker areas corresponding to
higher coverages. Close to the Turing-like bifurcation boundary, we have
found stationary microstructures (Fig. 3a) with the spatial period close to
the wavelength of the first unstable mode. Near the boundary of the wave
bifurcation, traveling wave trains were found (Fig. 3b) whose spatial period
was again close to the analytical prediction. Figure 4a shows spatial
profiles of both variables u and v in such a traveling wave. We see that they
are almost harmonical. Farther away from the bifurcation boundaries,
other structures, such as source-and-sink pattern shown in Fig. 3c, were
observed. The spatial distributions of reactants in this pattern (Fig. 4b) are
not harmonical. Figure 3d shows a one-dimensional simulation for the case
when traveling stripes and stationary microstructures coexist. In the begin-
ning of the simulation the upper half of the system was covered by the
traveling pattern and the lower half by the stationary structure. We find
that in this case a dislocation starts to travel through the system until it
relaxes to a stationary spatially periodic pattern.
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Fig. 3. Temporal evolution of the coverage u(x, t) in a one-dimensional simulation of
Eq. (1) in the deterministic limit for ==5, ;=3, }=1, :=0.5, =$=1 (a) resp. =$=3 (b), and
r0=0.089Lr in a system of size L=17.54Lr during a time interval T=77�kr , and =$=3,
\0=0.014, L=3.89Lr , and T=8.1�kr (c). As initial condition small random perturbations
were added to the (unstable) uniform stationary state. In (d) special initial conditions where
prepared as described in the text, the parameters where chosen as in the inset (d) of Fig. 2
with system size L=5.17Lr and T=14.3�kr . The coverage is shown in gray scale, darker areas
correspond to higher coverages.
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Fig. 4. One-dimensional profiles, obtained at the end of the simulations shown in Figs. 3b
and 3c, respectively. The solid and dashed lines correspond to the profiles of u and v.

In the two-dimensional deterministic system we have observed stand-
ing waves consisting of oscillations between orthogonal stripe patterns,
stationary microstructures, and traveling wave trains containing point-like
defects.(16) These patterns are typically much smaller than the characteristic
diffusion length which itself may be on the submicrometer scale. In such a

Fig. 5. Fluctuating traveling wave fragments; Z=1.07 105 L&2
r , :=0.08, L=1.7Lr ,

\0=0.028, the other parameters are the same as in Fig. 3b. The two-dimensional snapshots
(a, b, c) are separated by equal intervals 2t=0.07�kr . The temporal evolution in the one-
dimensional cross-section (d) is shown during time T=3.6�kr .
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situation only a relatively small number of adsorbed particles contributes
to the formation of a specific pattern and hence internal fluctuations have
to be taken into account.

Figure 5 shows the fluctuating coverage distributions in the asymptotic
statistical regime obtained by numerical integration of Eqs. (1) including
the noise terms given by Eq. (2). Here the interaction radius r0 is equal to
only 9 atomic lattice lengths l0 , the total size of the system is L=555l0 and
the characteristic diffusion length is Ldiff=327l0 . Clearly, at these small
scales the internal noises of the diffusion, adsorption, desorption and reac-
tion processes exhibit strong influence on the patterns. The individual
traveling stripes are now broken into many short fragments that form
irregular spatial patterns seen in the snapshots (a)�(c). Nonetheless,
examining the time evolution in the central cross-section [Fig. 5d], we
recognize that these fragments do not just fluctuate. These microstructures
travel across the surface while undergoing irregular variations of their
shapes. The directions of the translational motion of different fragments are
random and the fragments often collide. Merging of traveling fragments, as
well as splitting events, are observed in this process. Remarkably, the
magnitude of the propagation velocity of different fragments does not
significantly differ.

5. CONCLUSIONS

To summarize, we have investigated a hypothetical model where the
presence of strong attractive lateral interactions in reacting adsorbates can
lead to the spontaneous formation of stationary microstructures and travel-
ing nanoscale wave fragments. Turing-like and wave bifurcations based on
a comparable mechanism may be responsible for the formation of similar
nonequilibrium patterns in other systems that can be regarded as reactive
soft matter.

APPENDIX

The starting point for the derivation of Eqs. (1) is the microscopic
lattice model. Molecules of a given adsorbate species occupy only sites of
a certain planar lattice with Z lattice sites per unit area. The particles U
and V occupy different sets of adsorption sites with equal density of sites.
Here, this is modeled as a ``stack'' of two ``species lattices'' with identical
labeling of the lattice nodes which correspond to the adsorption sites. Each
site of a given species lattice can either be empty or occupied by a single
particle, i.e., multiple occupation of such a site is forbidden.

611Nanoscale Wave Patterns in Reactive Adsorbates



Both species can arrive at a given site from the gas phase. Under the
simplest assumptions, the adsorption rates, i.e., the probabilities of the
arrival of a molecule from the gas phase at a given vacant site of the lattice,
are wu

ad=ku
ad pu and wv

ad=kv
ad pv for particles U and V respectively, where

ku
ad and kv

ad are the sticking coefficients and pu and pv correspond to the
respective (constant) partial pressures in the gas phase.

While for the immobile surface species V the adsorption is the only
way for a new particles to arrive at a given site, mobile particles U can
arrive there also from neighboring sites of the lattice. The probability
w(r � r1) per unit time, that a given particle U jumps from a site r to a
neighboring site r1 will in general be influenced by lateral interactions with
other adsorbate molecules. The corresponding potential W(r) experienced
by the particle U at site r is assumed to be composed of a superposition of
pairwise interactions with the surrounding adparticles, i.e., it can be
expressed as

W(r)=&:
r$

[wuu(r&r$) nu(r$)+wuv(r&r$) nv(r$)] (17)

where nu(r$) and nv(r$) are the occupation numbers at r$, which can take
the values 0 and 1. The functions wuu(r) and wuv(r) are the binary poten-
tials of the attractive latteral interactions between two particles which
belong either to the same species U or to different species. The summation
in Eq. (17) is performed over all lattice sites r$, but because the binary
potentials vanish for distances exceeding the characteristic respective inter-
action radii, it is actually reduced to a summation over a certain
neighborhood of the site r.

In general, w(r � r1) will be a complex function of the potentials W(r)
and W(r1). Here, we assume that it is determined according to the
Metropolis algorithm, i.e.,

w(r � r1)=&0 exp \&H(2E ) 2E
kBT + (18)

where 2E=W(r1)&W(r), &0 is the hopping rate of a particle U in absence
of interactions, T is the surface temperature, kB is the Boltzmann constant,
and H(z) corresponds to the step function, i.e., H(z)=1 for z>0 and
H(z)=0 for z�0.

Besides by hopping to a neighboring site, an adsorbed particle U can
leave a given site r by a reaction with a particle V located at r or by
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thermal desorption. The probability per unit time for an event of the latter
type, i.e., the desorption rate, is

wu
des(r)=ku

des exp \W(r)
kBT + (19)

where ku
des is the desorption rate for a particle U occupying a site, which

is isolated from any surrounding adparticles.
The probability per unit time for a reaction between a particle U and

a particle V, both located at r, is wr=kr , where kr is the reaction rate con-
stant. In contrast to the rate constant for thermal desorption, the latter is
assumed to be independent of the potential W(r), because the reaction
takes place far from equilibrium, i.e., either it is triggered by a sufficient
amount of energy directly supplied from outside, such as light, or it is
strongly exothermic, i.e., the heat produced in a single reaction event is so
significant that educt molecules in the vicinity of the place where such an
event takes place can easily overcome the existing energy barriers for the
reaction. In the latter case, the nonequilibrium situation is typically main-
tained by an open reaction chamber with inflowing reactands and outflow-
ing product molecules and by removing heat from the crystal.

Using the above assumptions, a microscopic master equation for the
joint probability distribution P([nu(r)], [nv(r)], t) can be set up in the
following form

dP
dt

=:
r

ku
ad pu[nu(r) P(�nu(r)&1�, [nv])&(1&nu(r)) P]

+:
r

kv
ad pv[nv(r) P([nu], �nv(r)&1�)&(1&nv(r)) P]

+:
r

ku
des exp _W(r)

kBT & [[1&nu(r)] P(�nu(r)+1�, [nv])&nu(r) P]

+:
r

kr[[1&nu(r)][1&nv(r)] P(�nu(r)+1�, �nv(r)+1�)

&nu(r) nv(r) P]

+ :
r, r1

w(r1 � r)[nu(r)[1&nu(r1)] P(�nu(r)&1, nu(r1)+1�, [nv])

&[1&nu(r)] nu(r1) P] (20)

The summation over r1 in the last term of this equation includes only
sites that represent nearest neighbors of the site r. The short notations
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P(�nu(r)\1�, [nv]), P(�[nu], nv(r)\1�), and P(�nu(r)\1�, �nv(r)\1�) are
used, which mean that the set of occupation numbers in this distribution
differs from that in the distribution P only at the location r where the
occupation numbers nu(r), nv(r), and both numbers, respectively, are
increased (decreased) by one. P( |nu(r)&1, nu(r1)+1|, [nv]) denotes the
probability distribution for the case when nu(r) and nu(r1) are decreased
respectively increased by one and the other occupation numbers are identi-
cal with respect to P.

In the next step, coarse graining is introduced by dividing the lattice
into a set of boxes, each containing a large number of site locations. To
simplify the notations, the derivation is carried out in a one-dimensional
system, but it can straightforwardly be generalized to the two-dimensional
case. The system is divided into m boxes, each containing a large number
Nmax of site locations, which are still small as compared to the minimal
characteristic length scale of the appearing spatial patterns. Complete diffu-
sional mixing is assumed to take place inside every such box.

The total probabilities per unit time for the occurrence of an adsorp-
tion (of U or V particles) or a desorption event (only U ) in a box j already
containing nu, j and nv, j particles are proportional to the number of respec-
tive empty or occupied lattice sites in this box and are therefore given by
the equations

w~ ad, u(nu, j )=wu
ad (Nmax&nu, j )

w~ ad, v(nv, j )=wv
ad (Nmax&nv, j ) (21)

w~ des, u
j (nu, j )=wdes, u

j nu, j

where wdes, u
j =ku

des exp(W j �kBT ), assuming that the potential W(r) does
not change significantly inside the j th box, and therefore can be repre-
sented by a certain value Wj . Similarly, the total probability for the
occurrence of a reaction in the j th box is

w~ r(nu, j , nv, j )=wrnu, jnv, j �Nmax (22)

The mobility of adsorbed particles U is described as a random walk of
particles on a chain of boxes. In the presence of potential interactions, the
hopping rates of the particles are asymmetric. The probability fluxes for the
jth box can be schematically represented as

[ j&1] ww�
w~ +

j&1 [ j] ww�
w~ j

+

[ j+1]
(23)

[ j&1] �ww
w~ j

&

[ j] �ww
w~ &

j+1 [ j+1]
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Under the assumption of complete mixing inside the boxes, the proba-
bilities per unit time w~ \

j for a transition between the neighboring boxes are
proportional to the number nu, j of particles in the j th box and to the
fraction 1&nu, j\1 �Nmax of empty sites in the target box. Thus we have

w~ \
j =w\

j \1&
nu, j\1

Nmax + nu, j (24)

where the hopping rates for a single particle U into a free site in the
adjacent box are given [cf. Eq. (18)] by

w\
j =& exp _(W j&Wj\1) H(Wj\1&Wj )

kBT & (25)

and & is the hopping rate between the boxes in the interaction-free case.
Using these notations, we obtain the master equation for the multidimen-
sional distribution p([nu, 1 ,..., nu, m], [nv, 1 ,..., nv, m], t), which gives the
probability of finding nu, 1 ,..., nu, m and nv, 1 ,..., nv, m particles U resp. V in the
boxes located at x1 ,..., xm at the time moment t (for the terms corre-
sponding to the transport of adsorbed particles across the surface cf. ref. 7):

�p
�t

=wu
ad :

j

[(Nmax&nu, j+1) p~ &
u, j&(Nmax&nu, j ) p]

+wv
ad :

j

[(Nmax&nv, j+1) p~ &
v, j&(Nmax&nv, j ) p]

+:
j

wdes, u
j [(nu, j+1) p~ +

u, j&nu, jp]

+:
j

wr[(nu, j+1)(nv, j+1) p̂+
j &nu, jnv, jp]

+:
j

_j (nu, j+1) {\1&
nu, j+1&1

Nmax + p+
j +\1&

nu, j&1&1
Nmax + p&

j =
&:

j

_jnu, j \2&
nu, j+1+nu, j&1

Nmax + p

+:
j

#j (nu, j+1) {\1&
nu, j+1&1

Nmax + p+
j &\1&

nu, j&1&1
Nmax + p&

j =
+:

j

#jnu, j \nu, j+1&nu, j&1

Nmax + p (26)
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Here the sums over j are taken from 1 to m and the following short nota-
tions are employed:

p=p([nu, 1 ,..., nu, m], [nv, 1 ,..., nv, m], t)

p~ \
u, j=p([nu, 1 ,..., nu, j\1,..., nu, m], [nv, 1 ,..., nv, m], t)

p~ &
v, j=p([nu, 1 ,..., nu, m], [nv, 1 ,..., nv, j&1,..., nv, m], t)

p̂+
j =p([nu, 1 ,..., nu, j+1,..., nu, m], [nv, 1 ,..., nv, j+1,..., nv, m], t)

(27)
p+

j =p([nu, 1 ,..., nu, j+1, nu, j+1&1,..., nu, m], [nv, 1 ,..., nv, m], t)

p&
j =p([nu, 1 ,..., nu, j&1&1, nu, j+1,..., nu, m], [nv, 1 ,..., nv, m], t)

_j =(w+
j +w&

j )�2

#j =(w+
j &w&

j )�2

Now we use our assumption that the number of lattice sites Nmax in
each box is large (i.e., Nmax>>1). Introducing the local coverages uj=
nu, j �Nmax and vj=nv, j �Nmax and taking into account that the coverages
change only a little as a result of an adsorbtion, desorption, reaction or
hopping event, that involves a single particle, we write approximately that

p~ \
u, jrP\N &1

max

�P
�uj

+
1
2

N &2
max

�2P
�u2

j

p~ &
v, jrP&N &1

max

�P
�vj

+
1
2

N &2
max

�2P
�v2

j
(28)

p̂+
j rP+N &1

max { �P
�uj

+
�P
�vj=+N &2

max {1
2

�2P
�u2

j

+
1
2

�2P
�v2

j

+
�2P

�uj �vj=
p\

j rP+N &1
max { �P

�uj
&

�P
�uj\1=+N &2

max {1
2

�2P
�u2

j

+
1
2

�2P
�u2

j\1

&
�2P

�uj �u j\1 =
where P is a short notation for the distribution function P([uj ], [vj ], t).
Substituting these approximations into (26) and retaining there the terms
up to the order 1�Nmax , we obtain a multidimensional Fokker�Planck
equation for the joint probability distribution P([uj ], [vj ], t) (cf. ref. 7).

As mentioned above, the size of an individual box (which is denoted
below as lB) is small as compared to the minimal characteristic scale of the
considered spatial patterns. Therefore the coverages uj and vj do not
significantly change between the neighboring boxes and can be viewed as
the values of certain smooth coverages u(x) and v(x), respectively, taken at
discrete coordinate points.
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This notion allows us to introduce a continuous version of the multi-
dimensional Fokker�Planck equation in terms of the smooth coverages
u(x) and v(x). After the transformation to continuous coordinates, the
multidimensional distribution function P([uj ], [vj ], t) converts into the
functional P([u(x)], [v(x)], t) that gives the probability density of various
realizations of the random coverage fields u(x) and v(x). The evolution
equation for this functional is

�P
�t

=&| dx
$

$v(x)
[[wv

ad (1&v)&wruv] P]

&| dx
$

$u(x) {_wu
ad (1&u)&wdes, uu&wruv&2lB

�(#u(1&u))
�x & P=

&l2
B | dx

$
$u(x) {_(1&u)

�2(_u)
�x2 +_u

�2u
�x2& P=

+
1

2Z | dx
$2

$u(x)2 [[wu
ad (1&u)+wdes, uu] P]

+
1

2Z | dx
$2

$v(x)2 [[wv
ad (1&v)] P]

+
1

2Z | dx _ $2

$u(x)2+
$2

$v(x)2+2
$2

$u(x) $v(x)& [wruvP]

+
l2

B

2Z | dx
$2

$u(x)2 {_(1&u)
�2(_u)

�x2 &_u
�2u
�x2& P=

+
lB

2Z | dx
$2

$u(x)2 {_2#u
�u
�x

&2(1&u)
�(#u)

�x & P=
&

l2
B

Z | dx
$

$u(x)
�2

�x2 \ $
$u(x)

(1&u)+ [_uP]

&
lB

Z | dx
�

�x \_
$

$u(x)&
2

+ [#u(1&u) P] (29)

where we have introduced the parameter Z=Nmax �lB that gives the number
of lattice sites per unit area.

The coefficients _ and # in Eq. (29) represent certain functions of the
coordinate x that are given by the equations [cf. Eqs. (25) and (27)]
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_(x)=
&
2 _1+exp _&lB } �W

�x }<kBT &&
(30)

#(x)=&
&
2 _1&exp _&lB } �W

�x }<kBT && sign \�W
�x +

In the limit lB�r0 � 0 we therefore obtain

lim
lB � 0

(_(x) l2
B)=D

(31)

lim
lB � 0

(#(x) lB) = lim
lB � 0 \&

&l2
B

2kBT
�W
�x +=&

D
2kBT

�W
�x

where

D= lim
lB � 0

(&l2
B) (32)

is the diffusion constant.
Taking Eq. (29) in the limit lB�r0 � 0 and performing certain transfor-

mations of the transport terms (cf. ref. 7), we obtain the functional Fokker�
Planck equation

�P
�t

=&| dx
$

$u(x) {_wu
ad (1&u)&wdes, u(x) u&wruv

+
D

kBT
�

�x \u(1&u)
�W
�x ++D

�2u
�x2& P=

&| dx
$

$v(x) {_wv
ad (1&v)&wruv& P=

+
1

2Z | | dx dy
$2

$u(x) $u( y) {_(wu
ad (1&u)+wdes, u(x) u) $(x& y)

+
�2

�x �y
(2Du(1&u) $(x& y))& P=

+
1

2Z | | dx dy
$2

$v(x) $v( y)
[wv

ad (1&v) $(x& y) P]

+
1

2Z | | dx dy _ $2

$u(x) $u( y)
+

$2

$u(x) $v( y)
+

$2

$u( y) $v(x)

+
$2

$v(x) $v( y)& [wruv $(x& y) P] (33)
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As follows from the theory of random processes (cf. refs. 17 and 18),
this Fokker�Planck equation is equivalent to the stochastic partial differen-
tial equation

�u
�t

=ku
ad pu(1&u)&ku

des(W ) u&kruv+D
�2u
�x2

+
�

�x _
D

kBT
u(1&u)

�
�x

W(x)&+Z&1�2
- ku

ad (1&u) fad (x, t)

+Z&1�2
- ku

desu exp[W(x)�kBT ] fdes(x, t)

+Z&1�2 {- kr uv qreact(x, t)+
�

�x
(- 2Du(1&u) f (x, t))=

(34)
�v
�t

=kv
ad pv(1&v)&kruv+Z&1�2

- kv
ad (1&v) gad (x, t)

+Z&1�2
- kruv qreact(x, t)

where fad (x, t), fdes(x, t), qreact(x, t), f (x, t), and gad (x, t) are independent
white noises of unit intensity, and the Ito interpretation of the stochastic
partial differential equation is chosen.
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